Part Number Hot Search : 
FM160C PE3336 L2010 MAZ7082 20TQ035 B80N0 1N5280B 1D41A
Product Description
Full Text Search
 

To Download NT68F62 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NT68F62
8-Bit Microcontroller for Monitor (32K Flash MTP Type)
Features
Operating voltage range: 4.5V to 5.5V CMOS technology for low power consumption 6502 8-bit CMOS CPU core 8 MHz operation frequency 32K bytes of flash memory for Multi -Times Program 512 bytes of RAM 2Kbytes Masked BootROM for ISP. One 8-bit base timer 13 channels of 8-bit PWM outputs with 5V open drain 4 channel A/D converters with 6-bit resolution 25 bi-directional I/O port pins (8 dedicated I/O pins) Hsync/Vsync signals processor for separate & composite signals, including hardware sync signals polarity detection and freq. counters with 2 sets of Hsync counting intervals Hsync/Vsync polarity controlled output, 5 selectable free run output signals and self-test patterns, automute function, half freq. I/O function Two built-in IIC bus interfaces support VESA DDC1/2B+ Two layers of interrupt management NMI interrupt sources - INTE0 (External INT with selectable edge trigger) - INTMUTE (Auto Mute Activated) IRQ interrupt sources - INTS0/1 (SCL Go-low INT) - INTA0/1 (Slave Address Matched INT) - INTTX0/1 (Shift Register INT) - INTRX0/1 (Shift Register INT) - INTNAK0/1 (No Acknowledge) - INTSTOP0/1 (Stop Condition Occurred INT) - INTE1 (External INT with Selectable Edge Trigger) - INTV (VSYNC INT) - INTMR (Base Timer INT) - INTADC (AD Conversion Done INT) Hardware watch-dog timer function 40-pin P-DIP and 42-pin S-DIP packages
General Description
The NT68F62 is a new generation of monitor C for autosync and digital control applications. Particularly, this chip supports various functions to allow users to easily develop USB monitors. It contains the 6502 8-bit CPU core, 512 bytes of RAM for use as working RAM and as stack area, 32K bytes of Flash memory, 13-channels of 8-bit PWM D/A converters, 4-channel A/D converters for detection of keys which can save I/O pins, one 8-bit pre-loadable base timer, an internal Hsync and Vsync signals processor and a watch-dog timer, which prevents the system from abnormal operation and two IIC bus interfaces. The user can store EDID data in the 128 bytes of RAM for DDC1/2B, so that the user can reduce a dedicated EEPROM for EDID. The half frequency output function can save the external oneshot circuit. All of these designs are borne of our committment to offer our user savings on component costs. The 42 pin S-DIP IC provides two additional I/O pins - port40 & port41, Part number NT68F62U represents the SDIP IC. For future reference, port40 & port42 are only available for the 42 pin S-DIP IC.
1
V1.0
NT68F62
Pin Configurations
40-Pin P-DIP
[PG] DAC2 [0] DAC1/ADC3 [YE] DAC0/ADC2 [VPP] RESET VDD GND [8MHZ]OSCO [0]OSCI [OE/SE] P15/INTE0 [XE] P14/PATTERN [XA5] P13/HALFI [XA4] P12/HALFO [XA3] P11/ADC1 [XA2] P10/ADC0 [1]P16/INTE1 [DB7] P27 [DB6] P26 [DB5] P25 [DB4] P24 [DB3] P23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VSYNCI/INTV [XA8] HSYNCI[0] DAC3 [NV] DAC4/SCL1 [ERASE] DAC5/SDA1 [MASS] DAC6 [EXRSTB] CREG[TMR] P07/HSYNCO [XA1] P06/VSYNCO [XA0] P05/DAC12 [XY5] P04/DAC11 [XY4] P03/DAC10 [XY3] P02/DAC9 [XY2] P01/DAC8 [XY1] P00/DAC7 [XY0] P31/SCL0 [XA7] P30/SDA0 [XA6] P20 [DB0] P21 [DB1] P22 [DB2] [PG] DAC2 [0] DAC1/ADC3 [YE] DAC0/ADC2 [VPP] RESET VDD P40 GND [8MHZ]OSCO [0]OSCI [OE/SE] P15/INTE0 [XE] P14/PATTERN [XA5] P13/HALFI [XA4] P12/HALFO [XA3] P11/ADC1 [XA2] P10/ADC0 [1]P16/INTE1 [DB7] P27 [DB6] P26 [DB5] P25 [DB4] P24 [DB3] P23
42-Pin S-DIP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 VSYNCI/INTV [XA8] HSYNCI[0] DAC3 [NV] DAC4/SCL1 [ERASE] DAC5/SDA1 [MASS] P41 DAC6 [EXRSTB] CREG[TMR] P07/HSYNCO [XA1] P06/VSYNCO [XA0] P05/DAC12 [XY5] P04/DAC11 [XY4] P03/DAC10 [XY3] P02/DAC9 [XY2] P01/DAC8 [XY1] P00/DAC7 [XY0] P31/SCL0 [XA7] P30/SDA0 [XA6] P20 [DB0] P21 [DB1] P22 [DB2]
NT68F62U
NT68F62
*[
]: Flash Mode
*[
]: Flash Mode
Block Diagram
VDD CREG GND OSCI OSCO INTE0/1 VSYNCI/INTV HSYNCI VSYNCO HSYNCO PATTERN HALFI HALFO H/V Sync Signals Processor JEDEC Control Block ISP Control Block Interrupt Controller Watch Dog Timer I/O Ports CPU core 6502 8-Bit Base Timer A/D Converter P00 - P07 P10 - P16 P20 - P27 P30 - P31 P40 - P41 Timing Generator SRAM + STACK 512 Bytes PWM DACs
Voltage Regulator
SCL0 32KB Flash memory & 2KB BootROM IIC BUS SDA0 SCL1 SDA1 DAC0 - DAC7 DAC8 - DAC12 ADC0 - ADC3
2
NT68F62
Pin Description
Pin No. 40 Pin 1 2 42 Pin 1 2 Designation DAC2 DAC1/ADC3 DAC1 Reset Init. I/O O O Description Open drain 5V, D/A converter output 2 Open drain 5V, D/A converter output 1, shared with the A/D converter channel 3 input Open drain 5V, D/A converter output 0, shared with the A/D converter channel 2 input Schmitt Trigger input pin, low active reset with internal pulled down 50K resistor * Power Ground Crystal OSC output Crystal OSC input Bi-directional I/O pin with internal pulled up 22K resistor, shared with input pin of external interrupt source0 (NMI), withSchmitt trigger, selectable triggered, and internal pulled up 22K resistor Bi-directional I/O pin with internal pulled up 22K resistor, shared with the output of the self test pattern Bi-directional I/O pin with internal pulled up 22K resistor, shared with the half hsync input Bi-directional I/O pin with internal pulled up 22K resistor, shared with the half hsync output Bi-directional I/O pin with internal pulled up 22K resistor, shared with the A/D converter channel 1 input Bi-directional I/O pin with internal pulled up 22K resistor, shared with the A/D converter channel 0 input Bi-directional I/O pin with internal pulled up 22K resistor, shared with input pin of external interrupt source1, with Schmitt Trigger, selectable triggered, and an internal pulled up 22K resistor
3
3
DAC0/ADC2
DAC0
O
4 5 6 7 8
4 5 7 8 9
RESET VDD GND OSCO OSCI
I P P O I
9
10
P15/INTE0
I/O
10
11
P14/PATTERN
I/O
11
12
P13/HALFI
P13
I/O
12
13
P12/HALFO
P12
I/O
13
14
P11/ADC1
P11
I/O
14
15
P10/ADC0
P10
I/O
15
16
P16/INTE1
P16
I/O
3
NT68F62
Pin Description (continued)
Pin No. 40 Pin 16 - 23 42 Pin 17 - 24 Designation Reset Init. I/O Description Bi-directional I/O pin, push-pull structure with high current drive/sink capability Open drain 5V bi-directional I/O pin P30, shared with the SDA0 pin of IIC bus Schmitt Trigger buffer Open drain 5V bi-directional I/O pin P31, shared with the SCL0 pin of IIC bus Schmitt Trigger buffer Bi-directional I/O pin with internal pulled up 22K resistor, shared with open drain 5V D/A converter output 7 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the open drain 5V D/A converter output 8 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the open drain 5V D/A converter output 9 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the open drain 5V D/A converter output 10 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the open drain 5V D/A converter output 11 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the open drain 5V D/A converter output 12 Bi-directional I/O pin with internal pulled up 22K resistor, shared with the vsync out Bi-directional I/O pin with internal pulled up 22K resistor, shared with the hsync out Open drain 5V, D/A converter output 7 Open drain 5V, D/A converter output 6 Open drain 5V, D/A converter output 5, shared with open drain SDA1 line of IIC bus, Schmitt Trigger buffer
P27 - P20
I/O
24
25
P30/SDA0
P30
I/O
25
26
P31/SCL0
P31
I/O
26
27
P00/DAC7
P00
I/O
27
28
P01/DAC8
P01
I/O
28
29
P02/DAC9
P02
I/O
29
30
P03/DAC10
P03
I/O
30
31
P04/DAC11
P04
I/O
31
32
P05/DAC12
P05
I/O
32
33
P06/VSYNCO
P06
I/O
33 34 35 36
34 35 36 38
P07/HSYNCO DAC7 DAC6 DAC5/SDA1
P07
I/O O O
DAC5
O
4
NT68F62
Pin Description (continued)
Pin No. 40 Pin 37 38 42 Pin 39 40 Designation Reset Init. I/O Description Open drain 5V, D/A converter output 4, shared with the open drain SCL1 line of IIC bus, Schmitt Trigger buffer Open drain 5V, D/A converter output 3 Debouncing & Schmitt Trigger input pin for video horizontal sync signal, internal pull high, shared with the composite sync input Debouncing & Schmitt trigger input pin for video vertical sync signal, internal pull high, shared with the input pin of the external interrupt source, intv, with Schmitt Trigger, selectable triggered and internal pulled up 22K resistor Bi-directional I/O pin with internal pulled up 22K resistor, only 42 pin S-DIP available Bi-directional I/O pin with internal pulled up 22K resistor, only 42 pin S-DIP available
DAC4/SCL1 DAC3
DAC4
O O
39
41
HSYNCI
I
40
42
VSYNCI/INTV
VSYNCI
I
-
6
P40
I/O
-
37
P41
I/O
* This RESET pin must be pulled high by an external pulled-up resistor (5K suggestion), or it will remain at low voltage to continually rest system.
5
NT68F62
Functional Description 1. 6502 CPU
The 6502 is an 8-bit CPU that provides 56 instructions, decimal and binary arithmetic, thirteen addressing modes, true indexing capability, programmable stack pointer and variable length stack, a wide selection of addressable memory ranges, and interrupt input options. The CPU clock cycle is 4MHz (8MHz system clock divided by 2). Please refer to the 6502 data sheet for more detailed information.
7 Accumnlator A 7 Index Register Y 7 Index Register X 15 Program Counter PCH PCL 7 7 Stack Pointer SP 7 N V B D I Z
0
0
0
8
0 0
0 C
Status Register P Carry Zero IRQ Disable Decimal Mode BRK Command Overflow Negative 1=TRUE 1=Result ZERO 1=DISABLE 1=TRUE 1=BRK 1=TRUE 1=NEG
Figure 1.1. The 6502 CPU Registers and Status Flags
6
NT68F62
2. Instruction Set List
Instruction Code ADC AND ASL BCC BCS BEQ BIT BMI BNE BPL BRK BVC BVS CLC CLD CLI CLV CMP CPX CPY DEC DEX DEY EOR INC INX INY Add with carry Logical AND Shift left one bit Branch if carry clears Branch if carry sets Branch if equal to zero Bit test Branch if minus Branch if not equal to zero Branch if plus Break Branch if overflow clears Branch if overflow sets Clear carry Clear decimal mode Clear interrupt disable bit Clear overflow Compare Accumulator to memory Compare with index register X Compare with index register Y Decrement memory by one Decrement index X by one Decrement index Y by one Logical exclusive-OR Increment memory by one Increment index X by one Increment index Y by one Meaning A + M + C A, C A*M A C M7...M0 0 Branch on C 0 Branch on C 1 Branch on Z 1 A*M, M7N, M6V Branch on N 1 Branch on Z 0 Branch on N 0 Forced Interrupt PC+2 PC Branch on V 0 Branch on V 1 0C 0D 0I 0V AM XM YM M1M X1X Y1Y A MA M+1M X+1X Y+1Y Operation
7
NT68F62
Instruction Set List (continued)
Instruction Code JMP JSR LDA LDX LDY LSR NOP ORA PHA PHP PLA PLP ROL ROR RTI RTS SBC SEC SED SEI STA STX STY TAX TAY TSX TXA TXS TYA Meaning Jump to new location Jump to subroutine Load accumulator with memory Load index register X with memory Load index register Y with memory Shift right one bit No operation Logical OR Push accumulator on stack Push status register on stack Pull accumulator from stack Pull status register from stack Rotate left through carry Rotate right through carry Return from interrupt Return from subroutine Subtract with borrow Set carry Set decimal mode Set interrupt disable status Store accumulator in memory Store index register X in memory Store index register Y in memory Transfer accumulator to index X Transfer accumulator to index Y Transfer stack pointer to index X Transfer index X to accumulator Transfer index X to stack pointer Transfer index Y to accumulator Operation (PC+1) PCL, (PC+2) PCH PC+2, (PC+1) PCL, (PC+2) PCH MA MX MY 0 M7...M0 C No operation (2 cycles) A+MA A P A P C M7...M0 C C M7...M0 C P , PC PC , PC+1 PC A M C A, C 1C 1D 1I AM XM YM AX AY SX XA XS YA
* Refer to 6502 programming data book for more details.
8
NT68F62
3. RAM: 512 X 8 bits
The built-in 512 X 8-bit SRAM is used for data memory and stack area. The RAM addressing range is from $0080 to $027F. The contents of RAM are undetermined at power-up and are not affected by system reset. Software programmers can allocate stack area in the RAM by setting stack pointer register (S). Since the 6502 default stack pointer is $01FF, programmers must set S register to FFH when starting the program. as; LDX TXS #$FF
$0000 $003E $0080
System Registers Unused
RAM
stack pointer
$01FF $027F $0280
( 512 Bytes )
Unused
$77FF $7800 ( 2 K Bytes )
Boot ROM
NMI-L NMI-H RST-L RST-H IRQ-L IRQ-H NMI vector RESET vector
$7FFA $7FFB $7FFC $7FFD $7FFE $7FFF $8000
IRQ vector
Flash
( 32 K Bytes )
Memory
$FFFA $FFFB $FFFC $FFFD $FFFE $FFFF
NMI-L NMI-H RST-L RST-H IRQ-L IRQ-H
NMI vector RESET vector
IRQ vector
4.1. BootROM: 2K X 8 bits
NT68F62 Provides 2K bytes of Boot-ROM for ISP. The memory space is from $7800 to $7FFF. The addresses, from $7FFA to $7FFF, are reserved for the 6502 CPU vector.
4.2. Flash memory: 32K X 8 bits
NT68F62 provides 32K flash memory space for programming. The flash memory space is located from $8000 to $FFFF. The addresses, from $FFFA to $FFFF, are reserved for the 6502 CPU vectors, thus users must arrange them by themselves. This flash memory can be progammed repeatly at limited times to guarantee its performance.
9
NT68F62
5. System Registers
Addr. Register INIT Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W
Control Registers for I/O Port0 & Port1 $0000 $0001 PT0 PT1 FFH 7FH P07 P06 P16 P05 P15 P04 P14 P03 P13 P02 P12 P01 P11 P00 P10 RW RW
Control Register to Control Port2 I/O Direction $0002 PT2DIR FFH
P27OE
P26OE
P25OE
P24OE
P23OE
P22OE
P21OE
P20OE
W
Control Registers for I/O Port2 - 4 $0003 $0004 $0005 PT2 PT3 PT4 FFH 03H 03H P27 P26 P25 P24 P23 P22 P21 P31 P41 P20 P30 P40 RW RW RW
Only available for the 42 Pin SDIP version Control Registers for Synprocessor
$0006
SYNCON
FFH FFH

ENHOUT

ENHOUT
HSYNCI HCL5 VCL5 VCH5
HALFPOL ENOVER
VSYNCI HCL4 VCL4 VCH4
INSEN INSEN
ENHSEL
HSEL HSEL
S/ C S/ C VPOLO VPOLO HCL0 HCH0 VCL0 VCH0
FREQ0
R W R W R R W R R W W W W
$0007
HV CON
FFH FFH
HPOLI HCL3 HCH3 VCL3 VCH3
VPOLI HCL2 HCH2 VCL2 VCH2
FREQ2
HPOLO HPOLO HCL1 HCH1 VCL1 VCH1
FREQ1
$0008 $0009
HCNT L HCNT H
00H 00H
HCL7 HCNTOV CLRHOV
HCL6 VCL6
PAT1
NOHALF
$000A $000B
VCNT L VCNT H
00H 00H
VCL7 VCNTOV CLRVOV
$000C $000D $000E
FREECON HALFCON AUTOMUTE
FFH FFH FFH
ENPAT ENHALF
ENHDIFF
ENPOL
HDIFFVL3 HDIFFVL2
HDIFFVL1 HDIFFVL0
Control Registers to Enable PWM 8 - 15 Channels $000F ENDAC FFH
ENDK12 ENDK11
ENDK10
ENDK9
ENDK8
ENDK7
W
Control Registers for ADC 0 - 3 Channels $0010 $0011 $0012 $0013 $0014 ENADC AD0 REG AD1 REG AD2 REG AD3 REG FFH C0H 00H 00H 00H
CSTA


AD05 AD15 AD25 AD35
AD04 AD14 AD24 AD34
ENADC3
AD03 AD13 AD23 AD33
ENADC2
AD02 AD12 AD22 AD32
ENADC1
AD01 AD11 AD21 AD31
ENADC0
AD00 AD10 AD20 AD30
W R R R R
10
NT68F62
System Registers (continued)
Addr. Register INIT Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W
Control Register for Polling (Read) Interrupt Groups & Clearing (Write) INTE0 & INTMUTE Interrupt Requests $0016 NMIPOLL 00H $0017 IRQPOLL 00H IRQ2 INTE0 CLRE0 IRQ1 INTMUTE CLRMUTE IRQ0 R W R
Control Registers of Interrupt Enable $0018 $0019 $001A $001B IENMI IEIRQ0 IEIRQ1 IEIRQ2 00H 00H 00H 00H INTS0 INTS1 INTA0 INTA1 INTTX0 INTTX1 INTADC INTRX0 INTRX1 INTV INTE0 INTNAK0 INTNAK1 INTE1 INTMUTE INTSTOP0 INTSTOP1 INTMR RW RW RW RW
Control Registers for Polling (Read) & Clearing (Write) Interrupt Requests $001C IRQ0 00H $001D IRQ1 00H $001E IRQ2 00H INTS0 CLRS0 INTS1 CLRS1 INTA0 CLRA0 INTA1 CLRA1 INTTX0 CLRTX0 INTTX1 CLRTX1 INTADC CLRADC INTRX0 CLRRX0 INTRX1 CLRRX1 INTV CLRV INTNAK0 INTSTOP0 R W R W R W
CLRNAK0 CLRSTOP0 INTNAK1 INTSTOP1
CLRNAK1 CLRSTOP1 INTE1 CLRE1 INTMR CLRMR
Selection of Edge Triggered for INTV, INTE0 & 1 Interrupts $001F TRIGGER FFH INTVR INTE1R INTE0R R/W
Control Registers for Clearing Watch Dog Timer $0020 CLR WDT 0 1 0 1 0 1 0 1 W
Control Register for DDC1/2B+ of Channel 0 $0021 $0022 $0023 $0024 CH0ADDR CH0TXDAT CH0RXDAT CH0CON A0H 00H 00H E0H ADR7 TX7 RX7 ADR6 TX6 RX6 MD1/ 2 ADR5 TX5 RX5 ADR4 TX4 RX4 START START ADR3 TX3 RX3 STOP STOP ADR2 TX2 RX2 DDC2BR2 ADR1 TX1 RX1 TX0 RX0 DDC2BR0 W W R W R W
ENDDC
TXACK
DDC2BR1
SRW RSTART
$0025
CH0CLK
FFH
MODE
MRW
Control Register for DDC1/2B+ of Channel 1 $0026 $0027 $0028 CH1ADDR CH1TXDAT CH1RXDAT A0H 00H 00H ADR7 TX7 RX7 ADR6 TX6 RX6 ADR5 TX5 RX5 ADR4 TX4 RX4 ADR3 TX3 RX3 ADR2 TX2 RX2 ADR1 TX1 RX1 TX0 RX0 W W R
11
NT68F62
System Registers (continued)
Addr. $0029 Register CH1CON INIT E0H Bit7 Bit6 MD1/ 2 Bit5 Bit4 START START Bit3 STOP STOP Bit2 DDC2BR2 Bit1 Bit0 DDC2BR0 R/W W R W
ENDDC
TXACK
DDC2BR1
SRW RSTART
$002A
CH1CLK
FFH
MODE
MRW
Control Registers for Base Timer $002E $002F BT BTCON 00H 03H BT7 BT6 BT5 BT4 BT3 BT2 BT1 BT0 W W
BTCLK
ENBT
Control Registers for PWM Channel 0 - 13 $0030 $0031 $0032 $0033 $0034 $0035 $0036 $0037 $0038 $0039 $003A $003B $003C $003D DACH7 DACH8 DACH9 DACH10 DACH11 DACH12 DACH0 DACH1 DACH2 DACH3 DACH4 DACH5 DACH6 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 RW RW RW RW RW RW RW RW RW RW RW RW RW
$003E
ISP REG
00H 03H
ISP
DDC1_ISP CH1_A0
DDC0_IS P CH0_A0
R W
12
NT68F62
6. Timing Generator
This block generates the system timing and control signals to be supplied to the CPU and on-chip peripherals. A crystal quartz, ceramic resonator, or an external clock signal which will be provided to the OSCI pin generates system timing. It generates 8MHz for the system clock and 4MHz for the CPU. Although internal circuits have a feedback resistor and compacitor included, users can externally add these components for proper operating. The typical clock frequency is 8MHz. Different frequencies will affect the operation of those on-chip peripherals whose operating frequency is based on the system clock.
OSCI 8MHz OSCO (1) NT68F62
External Clock Unconnected
OSCI
OSCO NT68F62
(2)
Figure 6.1. Oscillator Connections
7. RESET
The NT68F62 can be reset by the external reset pin or by the internal watch-dog timer. This is used to reset or start the microcontroller from a POWER DOWN condition. During the time that this reset pin is held LOW (*reset line must be held LOW for at least two CPU clock cycles), writing to or from the C is inhibited. When a positive edge is detected on the RESET input, the C will immediately begin the reset sequence. After a system initialization time of six CPU clock cycles, the mask interrupt flag will be set and the C will load the program counter from the memory vector locations $FFFC and $FFFD. This is the start location for program control. An internal Schmitt Trigger buffer at the RESET pin is provided to improve noise immunity. The reset status is as follows: 1. PORT0PORT1PORT2PORT3 (& PORT4) pins will act as I/O ports with HIGH output 2. Sync processor counters reset and VCNT | HCNT latches cleared 3. All sync outputs are disabled 4. Base timer is disabled and cleared 5. Various Interrupt sources are disabled and cleared 6. A/D converter is disabled and stopped 7. DDC1/2B+ function is disabled 8. PWM DAC0 - DAC6 output 50% duty waveform and DAC7 - DAC12 is disabled 9. Watch-dog timer is cleared and enabled
13
NT68F62
8. A/D Converters
The structure of these analog to digital converters is 6-bit successive approximation. Analog voltage is supplied from external sources to the A/D input pins and the result of the conversion is stored in the 6-bit data latch registers ($0011 & $0014). The A/D channels are activated by clearing the correspondent control bits in the ENADC control register. When users write '0' into one of the enabled control bits, its correspondent I/O pin or DAC will be switched to the A/D converter input pin (ADC0 & ADC1 are shared with PORT10 & PORT 11; ADC2 & ADC3 are shared with DAC0 & DAC1). Conversion will be started by clearing the
CSTA bit (CONVERSION START) in the ENADC control register. When the conversion is finished, the system will set this INTADC bit. Users can monitor this bit to get the valid A/D conversion data in the AD latch registers ($0011 $0014). Users can also open the interrupt sources to remind users to get the stable digital data. Notice that only at the activated A/D channel, its latched data are available.
The analog voltage to be measured should be stable during the conversion operation and the variation must not exceed LSB for the best accuracy in measurement.
Addr. $0010 $0011 $0012 $0013 $0014 $001B $001E
Register ENADC AD0 REG AD1 REG AD2 REG AD3 REG IEIRQ2 IRQ2
INIT FFH C0H 00H 00H 00H 00H 00H
Bit7
CSTA
Bit6
Bit5 AD05 AD15 AD25 AD35
Bit4 AD04 AD14 AD24 AD34
Bit3
ENADC3
Bit2
ENADC2
Bit1
ENADC1
Bit0
ENADC0
R/W W R R R R R/W R W

AD03 AD13 AD23 AD33 INTADC INTADC CLRADC
AD02 AD12 AD22 AD32 INTV INTV CLRV
AD01 AD11 AD21 AD31 INTE1 INTE1 CLRE1
AD00 AD10 AD20 AD30 INTMR INTMR CLRMR
Reference ADC Table (VDD = 5.0V)
15 16 17 18 19 1A 1B 1.50V 1.58V 1.66V 1.74V 1.82V 1.90V 1.98V 1C 1D 1E 1F 20 21 22 2.06V 2.12V 2.20V 2.28V 2.35V 2.44V 2.51V 23 24 25 26 27 28 29 2.59V 2.67V 2.75V 2.82V 2.91V 2.98V 3.07V 2A 2B 2C 2D 2E 2F 30 3.14V 3.22V 3.30V 3.38V 3.46V 3.54V 3.62V
Note: It is strongly recommended that the ADC's input signal should be allocated within the ADC's linear voltage range (1.5V~3.5V) to obtain a stable digital value. Do not use the outer ranges (0V~1.4V & 3.6V~5.0V) in which the converted digital value is not guaranteed.
14
NT68F62
9. PWM DACs (Pulse Width Modulation D/A Converters)
There are 13 PWM D/A converters with 8-bit resolution in the NT68F62. All of these D/A (DAC0 - DAC12) converters are of open-drain output structure with an external 5V applied maximum. DAC0 - DAC6 are dedicated PWM channels, and DAC7 DAC12 are shared with the I/O pins. These shared PWM channels are activated by clearing the correspondent control bits in the ENDAC control register ($000F). When users write '0' into one of the enable control bits, its correspondent I/O pin will be switched to a PWM output pin. The PWM refresh rate is 62.5KHz operating on an 8MHz system clock. There are 13 readable DACH registers corresponding to 13 PWM channels ($0030 - $003D). Each PWM output pulse width is programmable by setting the 8 bit digital to the corresponding DACH registers. When these DACH registers are set to 00H, the DAC will output LOW (GND level) and every 1 bit addition will add 62.5ns pulse width. After reset, all DAC outputs are set to 80H (1/2 duty output). (Please refer to Figure 9.1 for the detailed timing diagram of the PWM D/A output.)
8MHz Fosc PWM value : 00 255 0 1 2 3 m-1 m
255
0
1
01
02
03
m
255(FF)
Figure 9.1. The DAC Output Timing Diagram and Wave Table
15
NT68F62
PWM DACs (continued)
DAC0 & DAC1 are shared with the ADC2 & ADC3 input pins respectively. If ENADC2/ 3 bit in the ENADC control register is cleared to LOW, the A/D converters will activate simultaneously. After the chip is reset, ENADC2/ 3 bits will be in HIGH state and DAC0 & DAC1 will act as PWM output pins. DAC4 & DAC5 are shared with SCL1 & SDA1 I/O pins respectively. If users clear the ENDDC bit in the CH1CON control register to LOW, channel 1 of the DDC will be activated. When used as the DDC channel, the I/O port will be of an open drain structure and include a 'Schmitt Trigger' buffer for noise immunity. After the chip is reset, ENDDC bits will be in HIGH state and DAC4 - DAC5 will act as PWM output pins.
Addr. $000F $0010 $0030 $0031 $0032 $0033 $0034 $0035 $0036 $0037 $0038 $0039 $003A $003B $003C $003D DACH7 DACH8 DACH9 DACH10 DACH11 DACH12 Register ENDAC ENADC DACH0 DACH1 DACH2 DACH3 DACH4 DACH5 DACH6 INIT FFH FFH 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H 80H Bit7 Bit6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 DKVL6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W W W RW RW RW RW RW RW RW
ENDK12
DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5 DKVL5
ENDK11
DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4 DKVL4
ENDK10 ENADC3
DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3 DKVL3
ENDK9 ENADC2
DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2 DKVL2
ENDK8 ENADC1
DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1 DKVL1
ENDK7
ENADC0
DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0 DKVL0
CSTA
DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7 DKVL7
RW RW RW RW RW RW
DAC control register ($000F) and DAC value register ($0030 - $003D)
16
NT68F62
10. Watch-Dog Timer (WDT)
The NT68F62 implements a watch-dog timer reset to avoid system stop or malfunction. The clock of the WDT is taken from the on-chip RC oscillator, which does not require any external components. Thus, the WDT will run, even if the clock on the OSCI/OSCO pins of the device has been stopped. The WDT time interval is about 0.5 second. The as; LDA STA #$55 $0020
Register CLR WDT INIT Bit7 0 Bit6 1 Bit5 0 Bit4 1 Bit3 0 Bit2 1 Bit1 0 Bit0 1 R/W W
WDT must be cleared within every 0.5 second when the software is in normal sequence, otherwise the WDT will overflow and cause a reset. The WDT is cleared and enabled after the system is reset, and can not be disabled by the software. Users can clear the WDT by writing 55H to the CLRWDT register ($0020).
Addr. $0020
11. Interrupt Controller
The system provides two kinds of interrupt sources: NMI & IRQ. The NMI cannot be masked if user enabled this NMI interrupt. Users will execute the NMI interrupt vector any time that sources are activated. The IRQ interrupts can be masked by executing a CLI instruction or by setting the interrupt mask flag directly in the C status register. In the process of an IRQ interrupt, if the interrupt mask flag is not set, the C will begin an interrupt sequence. The program counter and processor status register will be stored in the stack. The C will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter will be loaded from addresses $FFFE & $FFFF, thus transferring program control to the memory vector located at these addresses. For NMI interrupt, C will transfer execution sequence to the memory vector located at addresses $FFFA & $FFFB. When manipulating various interrupt sources, NT68F62 divides them into two groups for accessing them easily. One is the NMI group and the other is the IRQ group. - The NMI group includes INTE0, INTMUTE. - The IRQ group includes the subgroup of IRQ0, IRQ1,RQ2: IRQ0: DDC1/2B+ Channel 0 interrupt sources; It includes INTS0, INTA0, INTTX0, INTRX0, INTNAK0 and INTSTOP0 interrupts. IRQ1: DDC1/2B+ Channel 1 interrupt sources; It includes INTS0, INTA1, INTTX1, INTRX1, INTNAK1 and INTSTOP1. IRQ2: It includes INTADC, INTV, INTE1 and INTMR interrupt sources. Below are the interrupt sources.
Nonmaskable Interrupt Group:
Interrupt INTE0 INT INTMUTE Meaning External 0 INT Auto Mute Action It will be activated by the rising or falling edge of the external interrupt pulse. The triggered edge can be selected by EDGE0 bit. It will be activated when the mute condition occurs (Hsync frequency change). Please refer the synprocessor section for a more detailed explanation.
Maskable Interrupt Group:
Interrupt INTADC INTV INT INTE1 INT INTMR INT Meaning A/D Conversion Done Vsync INT External 1 INT Timer INT Action User activates the ADC by clearing the CSTART bit. When the AD conversion is done, this bit will be set. It will be activated by the rising edge of every vsync pulse. It will be activated by the rising or falling edge of the external interrupt pulse. The triggered edge can be selected by EDGE1 bit. It will be activated by the rising edge of every ??? when the Base Timer counter overflows and counting from $FF to $00.
17
NT68F62
DDC Channel 0/1 Maskable Interrupt Sources:
Interrupt INTS INT Meaning SCL Go-Low INT Action In DDC1 mode, it will be activated when the external device proceed a DDC2 communication. This action includes pulling the SCL line to ground or sending out a 'START' condition directly. The system will respond to this action by changing DDC1 mode to DDC2 slave mode. It will be activated in DDC2 slave mode when the external device calls a NT68F62 slave address. If this calling address matches the NT68F62 address, the system will generate this interrupt to remind the user It will be activated in DDC2 mode when the transmission buffer, IIC_TXDAT, is empty in transmission mode. It will be activated in DDC2 mode when the new data are stored in the IIC_RXDAT register in receive mode. In transmission mode, this interrupt will be activated when the NT68F62 has send out one byte of data but the external device does not respond with an acknowledgement bit to it. In SLAVE mode, this interrupt will be activated when the NT68F62 receives a 'STOP' condition.
INTA INT
Address Matched INT Transfer Buffer Empty INT Receiving Buffer Overflow INT No Acknowledge INT DDC2 Stop INT
INTTX INT INTRX INT INTNAK INT
INTSTOP INT
IRQ0 INTSTOP0 INTNAK0 INTRX0 INTTX0 INTA0 INTS0 IRQ1 INTSTOP1 INTNAK1 INTRX1 INTTX1 INTA1 INTS1 IRQ2 INTMR INTE1 INTV INTADC NMIPOLL INTMUTE INTE0
IEIRQ0
IRQ0
IEIRQ1
IRQ1
IRQ (to CPU 6502)
IEIRQ2
IRQ2 IENMI NMI (to CPU 6502)
Figure 11.1. Interrupt Controller Structure
18
NT68F62
Enabling Interrupts: The system will disable all of these interrupts after reset. Users can enable each of the interrupts by setting the interrupt enable bits at the IENMI, IEIRQ0 ~ IEIRQ2 control registers. For example, if users want to enable the external interrupt 0 (INTE0), write '1' to the INTE0 bit in the IENMI control register. At the INTE0 pin, whenever NT68F62 detects an interrupt message, it will generate an interrupt sequence to fetch the NMI vector. Because these IEX control registers can be read, users can read back what interrupts he has activated. At polling sequence, users need not poll those unactivated interrupts. Requesting Interrupts be set : No matter whether the user has set the interrupt enable bits or not, if the interrupt triggered condition is matched, the system will set the correspondent bits in the IRQ0 ~ IRQ3 control registers or in the NMIPOLL control register (INTE0 & INTMUTE bits). For example, if at the VSYNCI pin, the system detects a pulse occurring, the system will set the INTV bit in the IRQ2 control register. Interrupt Groups: The system divides the IRQ interrupt sources into several groups, ex IRQ0, IRQ1, and IRQ2. In each of these groups, if its membership in one of the interrupt groups has been activated, its group bit in the IRQPOLL control register will be set. For example, if the INTS0 of the first DDC1/2B+ channel is activated, the INTS0 bit in the IRQ0 control register will be set and the IRQ0 bit in the IRQPOLL control register will also be set. Notice that the IRQ0 bit in the IRQPOLL control register will be cleared by the system when all of its interrupt sources, INTS0, INTA0, INTTX0, INTRX0, INTNAK0 and INTSTOP0 have been cleared by the user or the system. The NMI group follows the same procedure as the IRQ groups. Polling Interrupts: When an NMI interrupt occurs, during the NMI interrupt service routine, users must poll the INTE0 & INTMUTE bit in the NMIPOLL control register to confirm the NMI interrupt source. The polling sequence decides the priority of the NMI interrupt acceptance. When an IRQ interrupt occurrs, during the IRQ interrupt service routine, users must poll the IRQ0 - IRQ2 in the IRQPOLL control register to confirm the IRQ interrupt source. In the same way, the polling sequence decides the priority of the IRQ interrupt acceptance. When deciding the IRQ source, users can further confirm the real interrupt source by polling the Correspondent IRQX control register ($001C - $001E). Clearing the Interrupt Request bit: When an interrupt occurrs, the CPU will jump to the address defined by the interrupt vector to execute the interrupt service routine. Users can check which one of the interrupt sources is activated and operating a task. Upon entering the interrupt service routine, the request bit that caused the interrupt must be cleared by the user before finishing the service routine and returning to the normal instruction sequence. If users forget to clear this request bit, after returning to the main program, it will interrupt CPU again because the request bit remains activated. Simply, users just need to write '1' to the polling bits in the NMIPOLL & IRQX registers ($0016 & $001C - $001E) to clear those completed interrupt sources. Selecting interrupt trigger edge: INTVR, INTE0R & INTE1R interrupt sources are the edge triggered type of interrupts. The system allows the selection of rising or falling edge triggers to be used under the user's control. After reset, the rising edge triggers are provided and the content is 'FF' in the TRIGGER control register ($001F). The user just clears the control bits in this TRIGGER register and switches these interrupts to be falling edge triggered.
19
NT68F62
Control Bit Description
Addr. Register INIT Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W
Control Register for Polling Interrupt $0016 NMIPOLL 00H $0017 IRQPOLL 00H IRQ2 INTE0 CLRE0 IRQ1 INTMUTE CLRMUTE IRQ0 R W R
Control Registers of Interrupt Enable $0018 $0019 $001A $001B IENMI IEIRQ0 IEIRQ1 IEIRQ2 00H 00H 00H 00H INTS0 INTS1 INTA0 INTA1 INTTX0 INTTX1 INTADC INTRX0 INTRX1 INTV INTE0 INTNAK0 INTNAK1 INTE1 INTMUTE INTSTOP0 INTSTOP1 INTMR RW RW RW RW
Control Registers for Polling (Read) & Clearing (Write) Interrupt Requests $001C IRQ0 00H $001D IRQ1 00H INTS0 CLRS0 INTS1 CLRS1 INTA0 CLRA0 INTA1 CLRA1 INTTX0 CLRTX0 INTTX1 CLRTX1 CLRADC INTRX0 CLRRX0 INTRX1 CLRRX1 CLRV INTNAK0 INTSTOP0 R W R W W
CLRNAK0 CLRSTOP0 INTNAK1 INTSTOP1
CLRNAK1 CLRSTOP1 CLRE1 CLRMR
Selection of Edge Triggers for INTE0 & 1 Interrupt $001F TRIGGER FFH INTVR INTE1R INTE0R R/W
20
NT68F62
12. I/O PORTs
The NT68F62 has 25 pins dedicated to input and output. These pins are grouped into 4 ports. and then the input signals can be read. This port output is high after reset. P00 - P05 are shared with DAC7 - DAC12 respectively. If
12.1. PORT0: P00 - P07
PORT0 is an 8-bit bi-directional CMOS I/O port with PMOS as internal pull-up (Figure 12.1). Each pin of PORT0 may be bit programmed as an input or output port without software controlling the data direction register. When Port0 works as an output, the data to be output are latched to the port data register and output to the pin. PORT0 pins that have '1's written to them are pulled HIGH by the internal PMOS pull-ups. In this state they can be used as inputs
ENDK7 - ENDK12 is set to LOW in the ENDAC register, P00 - P05 will act as DAC7 - DAC12 respectively (Figure
12.2). After the chip is reset, ENDK7 - ENDK12 will be in the HIGH state and P00 - P05s will act as I/O ports. P06 P07 are shared with VSYNCO & HSYNCO respectively. If ENHOUT ENVOUT is set to LOW in the HVCON register, P06 P07 will act as VSYNCO & HSYNCO respectively (Figure 12.3). After the chip is reset,
ENHOUT & ENVOUT will be in the HIGH state and P06P07 will act as I/O pins.
Bit4 P04 VSYNCI
ENDK11
Addr. $0000 $0007
Register PT0 HV CON
INIT FFH FFH FFH
Bit7 P07
Bit6 P06
Bit5 P05 HSYNCI
Bit3 P03 HPOLI
Bit2 P02 VPOLI
Bit1 P01 HPOLO HPOLO
Bit0 P00 VPOLO VPOLO
R/W RW R W W
ENHOUT
ENVOUT
$000F
ENDAC
FFH
ENDK12
ENDK10
ENDK9
ENDK8
ENDK7
PWM Output
VDD
PWM Data In
I/O
Figure 12.2. PWM Output Structure
VDD
Data Out
Data In
Data Out
O/P
Figure 12.1. I/O Structure
Figure 12.3. Output Structure
21
NT68F62
12.2. Port1: P10 - P16
PORT10 - PORT16 is a 7-bit bi-directional CMOS I/O port with PMOS as internal pull-up (Figure 12.1). Each bidirectional I/O pin may be bit programmed as an input or output port without software controlling the data direction register. When Port1 works as an output, the data to be output is latched to the port data register and output to the pin. Port1 pins that have '1's written to them are pulled high by the internal PMOS pull-ups. In this state they can be used as inputs and then the input signals can be read. This port output is high after reset. P10 & P11 are shared with AD0 & AD1 input pins respectively. If the ENADC0/ 1 bit in the ENADC control register is cleared to LOW, the A/D converters will activate simultaneously. After the chip is reset, ENADC0/1 bits will be in the HIGH state and P10 - P11 will act as I/O pins. P12P13 are shared with the HALF SIGNALS input and OUTPUT pins by accessing the OUTCON control register. If the ENHALF bit is cleared to LOW, P13 will switch to HALFHI pin (input pin) and P12 will switch to HALFHO pin (output pin, Figure 12.3). For HALFHI & HALFHO pin descriptions, please refer half frequency function in the H/V
Addr. $0001 $000C $0010 $0018 $001B Register PT1 FREECON ENADC IENMI IEIRQ2 INIT 7FH FFH FFH 00H 00H Bit7
ENPAT CSTA
sync processor paragraph. After the chip is reset, the
ENHALF bits will be in the HIGH state and P12P13 will act as I/O pins.
P14 is shared with the output pin of the self test pattern. If users clear the PATTERN bit in the SYNCON control register and the free running function has been activated, the P14 will switch to be the output pin of the self test pattern. This pattern output pin is of the push-pull structure. After the chip is reset, the PATTERN bits will be in the HIGH state and P14 will act as an I/O pin. (Refer to the 'Syncprocessor' section for more detailed information.) P15 & P16 can be shared with the external interrupt INTE0 & INTE1 pins if the INTE0/1 bits are set in the control register of the interrupt enable ($0018 & $001B). These interrupt pins have 'Schmitt Trigger' input buffers. After the chip is reset, INTE0/1 bits will be in the HIGH state and P15 & P16 will act as I/O pins. Refer to the 'INTERRUPT CONTROLLER' paragraph above for more details about the interrupt function.
Bit6 P16
PAT0
Bit5 P15
Bit4 P14
Bit3 P13
ENADC3
Bit2 P12 FREQ2
ENADC2
Bit1 P11
FREQ1 ENADC1
Bit0 P10
FREQ0 ENADC0
R/W RW W W RW RW

VDD


INTV
INTE0 INTE1
VDD
INTMUTE INTMR
Data Out
I/P Data Input
.
Data OE
I/O
Figure 12.4. Schmitt Input Structure
Data In
Figure 12.5. I/O Structure
22
NT68F62
12.3. PORT2: P20 - P27
PORT2, an 8-bit bi-directional I/O port (Figure 12.5), may be programmed as an input or output pin by the software control. When setting the PT2DIR control bit to '0', its correspondent pin will act as an output pin. On the other hand, clear PT2DIR bit to '1'and it will act as an input pin. When programmed as an input pin, it has an internal pull-up resistor. When programmed as an output pin, the data to be output is latched to the port data register and output to the pin with a push-pull structure. This port acts as an input port after reset.
Addr. $0002 $0003 $0010 $0029 Register PT2DIR PT2 ENADC CH1CON INIT FFH FFH FFH FFH Bit7
P27OE
Bit6
P26OE
Bit5
P25OE
Bit4
P24OE
Bit3
P23OE
Bit2
P22OE
Bit1
P21OE
Bit0
P20OE
R/W W RW W RW
P27
CSTA ENDDC
P26 MD1/ 2
P25
SRW
P24 START
P23
ENADC3
P22
ENADC2
P21
ENADC1
P20
ENADC0
STOP
RXACK
TXACK
12.4. PORT3: P30 - P31
PORT3 is a 2 bit bi-directional open-drain I/O port (Figure 12.6). Each pin of Port3 may be bit programmed as an input or output port with open drain structure. When Port3 works as an output pin, the data to be output is latched to the port data register and output to the pin. When Port3 pins have '1's written to them, users must connect PORT3 with the external pulled-up resistor and then PORT3 can be used as an input (the input signal can be read). This port output is hiGH after reset. P30 P31 include Schmitt Trigger buffers for noise immunity and can be configured as the IIC pins SDA0 & SCL0 respectively. If ENDDC is set to LOW in the CH0DDC control register, P30P31 will act as SDA0 & SCL0 I/O pins respectively and will be of an open drain structure (Figure 12.6). After the chip is reset, this ENDDC bit will be in the HIGH state and PORT3 will act as I/O pin.
Addr. $0004 $0024 Register PT3 CH0CON INIT FFH FFH Bit7
ENDDC
Bit6 MD1/ 2
Bit5
SRW
Bit4 START
Bit3 STOP
Bit2 RXACK I/O
Bit1 P31 TXACK
Bit0 P30
R/W RW RW
Data Out
Data In
Figure 12.6. PORT3
23
NT68F62
12.5. PORT4: P40 - P41
PORT4 is available only on the 42pin SDIP IC. PORT40 - PORt41 is a 2-bit bi-directional CMOS I/O port with PMOS internal pull-up (Figure 12.1). Each bi-directional I/O pin may be bit programmed as an input or output port without software controlling the data direction register. When Port4 works as an output port, the data to be output is latched to the port data register and output to the pin. Port4 pins that have '1's written to them are pulled high by the internal PMOS pull-ups. In this state they can be used as input pins. The input signal can be read. This port outputs HIGH after reset.
Addr. $0005 Register PT4 INIT FFH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 P41 Bit0 P40 R/W RW
13. H/V Sync Signals Processor
The functions of the sync processor include polarity detection, Hsync & Vsync signals counting, and programmable sync signals output. It also provides 3-sets of free running signals and special outputs of the test pattern during the burn-in process when activating the free running output function. The NT68F62 can properly handle either composite or separate sync signal inputs even without sync signal input. As to processing the composite sync signal, a hardware separator will be activated to extract the HSYNC signal under the users control. The input at HSYNCI can be either a pure horizontal sync signal or a composite sync signal. For the sync waveform refer to Figure 13.1 & Figure 13.2. The sync processor block diagram is shown in Figure 13.3. Both VSYNCI & HSYNCI pins have Schmitt Triggers and filtering processes to improve noise immunity. Any pulse that is shorter than 125 ns, will be regarded as a glitch and will be ignored.
(a) Positive polarity
(b) Negative polarity
Figure 13.1. Separate H Sync. Waveform
(a) Positive Polarity
(b) Negative Polarity
Figure 13.2. Composite H Sync. Waveform
24
NT68F62
VCNTL VCNTH Control Logic INTV V sync. Latch Enable
S/C
VSYNC INPUT Schmitt Trigger Digital Filter 1 0 16.384 ms 32.968 ms
8us
Enable V sync. counter Reset
V
HSEL 0 1 ENHSEL 0 1
Enable H sync. counter Reset
AUTO MUTE
V
HSYNC INPUT Schmitt Trigger Digital Filter
Sync Separator
H
H&V Sync. Polarity Detector
INTMUTE
H sync. Latch
Enable
HPOLO
HCNTL HCNTH
HPOLI
H
H Sync. Output Control
HSYNCO
ENPAT, PAT10/1 Pattern O/P Control
FREQ0/1/2
FREE_RUN Control
PATTERN
S/C
0
VPOLI
V
V
V Sync. Output Control
VSYNCO
1
VPOLO
Figure 13.3. Sync. Processor Block Diagram
25
NT68F62
13.1. V & H Counter Register: VCNTL/H, HCNTL/H
Vsync counter: VCNTL/H, the 14-bit READ ONLY register, contains information on the Vsync frequency. An internal counter counts the numbers of 8us pulses between two VSYNC pulses. When the next VSYNC signal is recognized, the counter is stopped and the VCNTH/L register latches the counter value. Then the counter counts from zero again for evaluating the next VSYNC time interval. The counted data can be converted to the time duration between two successive Vsync pulses. If there is no VSYNC signal , the counter will overflow and set the VCNTOV bit (in the VCNTH register) to HIGH. Once the VCNTOV is set to HIGH, it stays in the HIGH state until '1' is written to it (CLRVOV bit). Hsync counter: If the ENHSEL bit is set to HIGH, the internal counter counts the Hsync pulses between two Vsync pulses. The HCNTL/H control registers contain the numbers of Hsync pulse between two Vsync pulses. These data can determine if the Hsync frequency is valid or not to determine the accurate video mode. The system supports two other options of the time interval for the user to count the frequency of Hsync pulses. If users clear the ENHSEL and set the HSEL bits properly, this internal counter counts the Hsync pulses during a system defined time interval. The time interval is defined below:
ENHSEL HSEL
Hsync Freq Disabled 16.384 ms 32.768 ms
Note After system reset or users disabling
1 0 0
0 1
After system reset, this interval will be disabled and the content of ENHSEL & HSEL0 bits will be '1'. When this function is disabled, the HCNTL/H counter works on the VSYNC pulse. It is invalid to write '00' to them. Latching the hsync counter: The counted value will be latched by the HCNTH/L register pairs that are updated by the Vsync pulse or by the system defined time interval. (Refer to the Figure 13.4 for the operation of the HCNTL/H counter.) If the counter overflows, the HCNTOV bit (in the HCNTH register) will be set to HIGH. Once the HCNTOV is set to HIGH, it keeps in the HIGH state until '1' is written to it (CLRHOV bit). When setting this CLRHOV bit, the HCNT counter will not be reset to zero.
Latch HCNT register Reset H sync. counter Start pulse counting

Latch HCNT register Reset H sync. counter Start pulse counting
VSYNCI
Figure 13.4. Hsync Counter Operation
26
HSYNCI
16.384ms/32.768ms (Setting HSEL0/1 bits)
HSYNCI
NT68F62
(1) HSYNCI Composite H sync. waveform (H EOR V) (2) HSYNCI Composite H sync. waveform (H OR V)

Hsync pulse or no pulse, the output signal of Hsync will be inserted.
2s
HSYNCO

Original Hsync Pulse
Inserted Hsync Pulse
Original Hsync Pulse
VSYNCO
Widen 9s
Figure 13.5. Composite H & V Sync. Processing
27
NT68F62
Sync. Mode Processing
System Default: S/C = '1' & ENSEL = '1' Open INTV & clear INTV flag
Set S/C = '0' Clear VCNTOV & HCNTOV Open INTV & clear INTV flag
No INTV ? Yes Delay 132 ms Delay 132 ms
Set S/C = '1' & ENSEL = ''0' & SELECT TIME INTRVAL (16.384 or 32.968ms) Clear VCNTOV & HCNTOV Delay 2 * TIME INTELVAL
Freq. Calculating
Yes HCNTH = '00' ? No VCNTOV = '1' ? No STAND-BY Mode Yes HCNTH = '00' ? NORMAL Mode Seperate Sync. No HCNTH ='00' ? No Yes Worng Mode No Yes VCNTOV = '1' ? Yes Suspend Mode
Off Mode
1. Extract VCNTL/H 14 bit data 2. 14 bits data * 8 us = Vsync. time duration 3. Its reciprocal is Vsync. freq.
1. Extract HCNTL/H 12 bit data 2. 12 bit data * Vsync. freq. = Hsync. freq. or 12 bits data/time interval (16.382 or 32.968 ms) 3. Its reciprocal is Hsync. time duration.
Read VCNT|HCNT Counter Register
Read VCNT|HCNT Counter Register Freq. Calculating NORMAL Mode Composite Sync. Return
Return
Figure 13.6. H & V Sync. Software Control Flow Chart (for reference only)
28
NT68F62
13.2. Sync Processor Control Register:
Polarity: The detection of Hsync or Vsync polarity is achieved by the hardware circuit that samples the sync signal's voltage level periodically. Users can read the HPOLI & VPOLI bits from the HVCON register, the bit = '1' represents positive polarity and '0' represents negative polarity. Furthermore, users can read the HSYNCI and VSYNCI bits in the HVCON register to detect the H & V sync input signal. Users can control the polarity of the H & V sync output signal by writing the appropriate data to the HPOLO and VPOLO bits in the HVCON register, '1' represents positive polarity and '0', negative polarity. Composite sync: Users have to determine whether the incoming signal is separate sync or composite sync and set the S/ C & ENHSEL / HSEL bit properly. If the input sync signal is composite and after setting S/ C to '0', the sync separator block will be activated (please refer to Figure 13.5). At the area of a Vsync pulse, there can exist Hsync pulses or not. For the output of Hsync, users can activate hardware to interpolate the Hsync pulses in that area by clearing the INSEN bit. The width of these inserted pulses is fixed at 2uS and the time interval is the same as the previous one. According to the last Hsync pulse outside the Vsync pulse duration, the hardware will arrange the interval of these hardware interpolated pulses. These inserted Hsync pulse perhaps have maximum phase deviation of 125 nS. The Vsync pulse can be extracted by hardware from the composite Hsync signal and the delay time of the output Vsync signal will be limited to less than 20ns. To insert the Hsync pulse safely, the extracted Vsync pulse will be widened about 9s. Although , the system will insert the Hsync pulse evenly, the last inserted Hsync pulse will have a different frequency from the original ones. The system will not implement this insertion function so users must clear the INSEN bit in the SYNCON control register to activate this function. After reset, the S/ C &
INSEN bits default value are HIGH and clear the VCNT | HCNT counter latches to zero.
Sync output: In pin assignment, VSYNCO & HSYNCO represent Vsync & Hsync output, which are shared with P06 & P07 respectively. If ENVOUT & ENHOUT are set to '0' in the HVCON register, P06 & P07 will act as VSYNCO & HSYNCO output pins. When the input sync is a separate signal, the V/HSYNCO will output the same signal as the input without delay. But if the input sync is a composite signal, the VSYNCO signal will have a fixed delay time of about 20ns and the HSYNCO has a nonfixed delay time of about 125ns. Half frequency Input and output: In pin assignment, when users set ENHALF bits to '0' in the HALFCON register, the HALFHO pin will act as an output pin and output half of the input signal in the HALFHI pin with 50% duty (see Figure 13.7). If set NOHALF to '0', HALFHO will output the same signal in the HALFHI pin and the user can control its polarity of output HALFHO by setting HALFPOL bit, '1' for positive and '0' for negative polarity. After the chip is reset,
ENHALF NOHALF & HALFPOL will be in the HIGH state and P12 & P13 will act as I/O pins. It is recommended to add a Schmitt Trigger buffer at the front of the HALFI pin.
Free run signal output: The user can select one of the free running frequencies (listed below) outputting to HYSNCO & VSYNCO pin by setting the FREQ0/1/2 bits. If the user does not enable the H/VSYNCO by clearing the ENVOUT or the ENHOUT bits, any setting of FREQ0/1/2 bits will be invalid. After system reset, NT68F62 does not provide free running frequency and both of the FREQ0/1/2 bits are set to ' 1'. The free running frequency can be set according the table below:
Free Running Freq. 1 2 3 4 5
FREQ2
FREQ1
FREQ0
Hsync Freq. 8M/256=31.2K 8M/4/9/5=44.4K 8M/128=62.5K 8M/4/5/5=80K 8M/4/2/11=90.9K Disabled Free Run function
Vsync Freq. Hsync/512=61.0Hz Hsync/512=86.8Hz Hsync/3/5/7/8=74.4Hz Hsync/1024=78.1Hz Hsync/1024=88.7Hz
Note Refer to Figure 13.7
0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 0/1 0 1
After System Reset
29
NT68F62
Self test pattern: On activating the free running function, the system will generate the test pattern when clearing the ENPAT bit. The PORT14 pin will switch from I/O pin to pattern output pin (push-pull structure). The system provides four types of test patterns. Refer to the figure below. Set the PAT0 bits to select the pattern type (Figure 13.8). If the free run function has not been enabled, any change of ENPAT & PAT0 bits will be invalid. Refer to the Figure 13.9 for the porch time of the video pattern.
PAT0
Test Pattern (1) (2)
BACK Porch of VBLANK Front Porch of HBLANK
Note Only activated when ENPAT bit is cleared
0 1
Free Running Freq. Front Porch of VBLANK
The porches of the self test pattern are listed below:
BACK Porch of HBLANK VSYNC PULSE WIDTH HSYNC PULSE WIDTH
1 2 3 4 5
128s 90.5s 51s 51.5s 46.6s
864s 589s 528s 596s 515s
460ns 1.18s 424ns 185ns 436ns
2.00s 1.93s 1.92s 1.94s 1.94s
64s 64s 64s 64s 64s
1s 1s 1s 1s 1s
Mode change detection: The system provides a hardware detection of a Sync signal change and supports the user to respond to this transition with a proper process as soon as possible. There are three kinds of detection that will set the INTMUTE bit. Hsync counter: Users can enable the HDIFF comparison by clearing the ENHDIFF bit and then preloading a different value to the HDIFF0-3 bits in the AUTOMUTE control register ($000E). The system will latch the new value of theHsync counter and compare it with the last latched value. If this difference is great than the user defined value at theHDIFF0-3 bits then the system will set the INTMUTE interrupt bit. H/V polarity: Users can enable polarity detection by clearing the ENPOL bit. The system will set the INTMUTE bit when the polarity of Hsync or Vsync have been changed. H/V counter overflow: Users can enable the detection of sync counters overflow by clearing the ENOVER bit. The system will set the INTMUTE bit whenever the counter of Hsync or Vsync has overflowed. The above three sources of setting this INTMUTE bit can be enabled or disabled by user. If the user opens this interrupt and this interrupt event occured, the system will generate a NMI interrupt to remind users any time. At the user's manipulation, a software debounce to confirm the transition of a sync signal one more time will make the frequency detection more stable and reliable, but it will affect the response time. After the system reset, this 'automute' function will be disabled and the HDIFF0~2 control bits will be cleared to ' $0F'.
HALFHI
HALFHO: Half freq. Output signal (50% duty)
HALFHO output signal when NOHALF bit clear to LOW (the same signal as in the HALFHI pin)
Figure 13.7. Half Freq. Sync. Waveform
30
NT68F62
(1)
(2)
Figure 13.8. Two Types of Testing Pattern
VSYNC
64s
Back-Porch Video
Front-Porch
HSYNC
1s
Back-Porch Video
Front-Porch
Figure 13.9. The Porch of the Free Running Self Test Pattern
31
NT68F62
13.3 Power Saving Mode detect:
Video modes are listed below, especially from mode 2 to mode 4 just for power saving. All of the modes can be easily detected by NT68F62 (Figure 13.6). Mode (1) Normal (2) Stand-by (3) Suspend (4) Off H-Sync Active Inactive Active Inactive V-Sync Active Active Inactive Inactive
Control Bit Description:
Addr. Register INIT Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W
Control Registers for Synprocessor $0006 SYNCON FFH FFH $0007 HV CON FFH FFH $0008 $0009 HCNT L HCNT H 00H 00H
ENHOUT

ENVOUT


INSEN INSEN
ENHSEL
HSEL HSEL
S/ C S/ C VPOLO VPOLO HCL0 HCH0 VCL0 VCH0
FREQ0
R W R W R R W R R W W W W
HSYNCI VSYNCI HCL5 VCL5 VCH5 HALFPOL
ENOVER
HPOLI HCL3 HCH3 VCL3 VCH3
VPOLI HCL2 HCH2 VCL2 VCH2
FREQ2
HPOLO HPOLO HCL1 HCH1 VCL1 VCH1
FREQ1
HCL4 VCL4 VCH4
HCL7 HCNTOV CLRHOV
HCL6 VCL6
PAT0 NOHALF ENPOL
$000A $000B
VCNT L VCNT H
00H 00H
VCL7 VCNTOV CLRVOV
$000C $000D $000E
FREECON HALFCON AUTOMUTE
FFH FFH FFH
ENPAT ENHALF ENHDIFF
HDIFFVL3 HDIFFVL2 HDIFFVL1 HDIFFVL0
32
NT68F62
14. Base Timer (BT)
The BASE TIMER is an 8-bit counter, and its clock source can be chosen from 1s or 1ms by setting the BTCLK bit ('0' for 1s and '1' for 1ms). The BT can be enabled or disabled by the ENBT bit in the BTCON register. The BT will start counting while clearing the ENBT bit to `0'. After the chip is reset, the BTCLK and ENBT bits are set to '1' (the BT is disabled). Before enabling the BT, it can be preloaded with a value by writing a value to the BT register (write only) at any time and then the BT will start to count up from this preloaded value. When the BT's value reaches FFH, it will generate a timer interrupt if the timer interrupt is enabled, and then the counter will wrap around to 00H. The timer's maximum interval is 256ms or 256s depending on the BTCLK value.
1us 1ms
0 1 BTCLK
BT7
BT6
BT5
BT4
BT3
BT2
BT1
BT0
INTMR INT
Control Bit Description:
Addr. $002E $002F Register BT BT CON INIT 00H 03H Bit7 BT7 Bit6 BT6 Bit5 BT5 Bit4 BT4 Bit3 BT3 Bit2 BT2 Bit1 BT1
BTCLK
Bit0 BT0
ENBT
R/W W W
33
NT68F62
15. IIC Bus Interface: DDC1 & DDC2B Slave Mode
Interface: IIC bus interface is a two-wire, bi-directional serial bus which provides a simple, efficient way for data communication between devices, and minimizes the cost of connecting among various peripheral devices. NT68F62 provides two IIC channels. Both of them are shared with I/O pins and their structures are open drain. When the system is reset, these channels are originally of general I/O pin structure. All of these IIC bus functions will be activated only after their ENDDC bits are cleared to '0' (CH0/1CON registers). DDC1 & DDC2B+ function: Two modes of operation have been implemented in the NT68F62, uni-directional mode (DDC1 mode) and bi-directional mode (DDC2B+ mode). These channels will be activated as DDC1 function initially when users enable the DDC function. These channels will switch automatically to DDC2B+ function from DDC1 function when a low pulse greater than 500ns is detected on the SCL line. Users can start a master communication directly from the DDC1 communication by clearing the
MODE bit in the CH0/1CLK control register.
Data transfer: At first, the user must put one byte of transmitted data into the CH0/1TXDAT register in advance, and activate the IIC bus by setting the ENDDC bit to '0'. Then open the INTTX0/1 interrupt source by setting INTTX0/1 to '1' in the IEIRQ0/1 registers. On the first 9 rising edges of Vsync, the system will shift out invalid bits in the shift register to the SDA pin to empty the shift register. When the shift register is empty and on the next rising edge of Vsync, it will load data from the CH0/1TXDAT registers to the internal shift register. At the same time, the NT68F62 will shift out the MSB bit and generate an INTTX0/1 interrupt to remind the user to put the next byte data into the CH0/1TXDAT register. After eight rising clocks, there will have been eight bits shifted out in proper order and shift register will become empty again. At the ninth rising clock, it will shift the ninth bit (null bit '1') out to the SDA. And on the next rising edge of Vsync clock, the system will generate an INTTX0/1 interrupt again. In the same way, the NT68F62 will load new data from the CH0/1TXDAT registers to the internal shift register and shift out one bit right away. Beware: the user should put one new data into the CH0/1TXDAT registers before the shift register is empty (the next INTTX0/1 interrupt). If not, the hardware will transmit the last byte of data repeatedly. Vsync clock: Only in the separate SYNC mode can the Vsync pulse be used as a data transfer clock and its frequency can be up to 25KHz maximum. In composite Vsync mode, NT68F62 can not transmit any data to the SDA pin, regardless of whether the Vsync can be extracted from the composite Hsync signal.
The channels can return to DDC1 function when users set the MD1/ 2 bit to '1' in the CH0/1CON registers.
15.1. DDC1 bus interface
Vsync input and SDA pin: In DDC1 function, the Vsync pin is used as an input clock pin and the SDA pin is used as a data output pin. This function comprises two data buffers: one is the preloading data buffer for putting one byte data in advance by the user (CH0/1TXDAT), and the other is the shift register for shifting out one bit data to the SDA line, which users can not access directly. These two data buffers cooperate properly. For the timing diagram please refer to Figure 15.1. After the system resets, the IIC bus interface is in DDC1 mode.
34
NT68F62
Control Bit Description:
Addr. $0016 Register NMIPOLL INIT 00H Bit7 $0017 $0019 $001A $001C IRQPOLL IEIRQ0 IEIRQ1 IRQ0 00H 00H 00H 00H $001D IRQ1 00H Bit6 Bit5 INTS0 INTS1 INTS0 CLRS0 INTS1 CLRS1 Bit4 INTA0 INTA1 INTA0 CLRA0 INTA1 CLRA1 Bit3 INTTX0 INTTX1 INTTX0 CLRTX0 INTTX1 CLRTX1 Bit2 IRQ2 INTRX0 INTRX1 INTRX0 CLRRX0 INTRX1 CLRRX1 Bit1 INTE0 CLRE0 IRQ1 INTNAK0 INTNAK1 INTNAK0 CLRNAK0 INTNAK1 CLRNAK1 Bit0 INTMUTE CLRMUTE IRQ0 INTSTOP0 INTSTOP1 INTSTOP0 CLRSTOP0 INTSTOP1 CLRSTOP1 R/W R W R RW RW R W R W
Control Register for DDC1/2B+ of Channel 0 $0021 $0022 $0023 $0024 CH0ADDR CH0TXDAT CH0RXDAT CH0CON A0H 00H 00H E0H ADR7 TX7 RX7
ENDDC
ADR6 TX6 RX6 MD1/ 2
MRW
ADR5 TX5 RX5
ADR4 TX4 RX4 START
ADR3 TX3 RX3 STOP
ADR2 TX2 RX2
ADR1 TX1 RX1 TXACK
TX0 RX0
W W R W
$0025 CH0CLK FFH
MODE
SRW RSTART
START
STOP
RXACK
DDC2BR0
R W
DDC2BR2 DDC2BR1
Control Register for DDC1/2B+ of Channel 1 $0026 $0027 $0028 $0029 CH1ADDR CH1TXDAT CH1RXDAT CH1CON A0H 00H 00H E0H ADR7 TX7 RX7 ADR6 TX6 RX6 ADR5 TX5 RX5 ADR4 TX4 RX4 START ADR3 TX3 RX3 STOP ADR2 TX2 RX2 ADR1 TX1 RX1 TXACK TX0 RX0 W W R W
ENDDC MD1/ 2
$002A CH1CLK FFH
MODE
MRW
SRW RSTART
START
STOP
RXACK
DDC2BR0
R W
DDC2BR2 DDC2BR1
$003E
ISP REG
00H 03H
ISP
DDC1_ISP CH1_A0
DDC0_ISP CH0_A0
R W
35
NT68F62
ENDDC (in CH0CON register)
Vsync Pulse 1 2 3 4

9
1
2
3
4
5
6
7
8
9
1
2
INTV Load data in the CH0TXDAT register to shift register


INTTX

User can load next byte data to CH0TXDAT register
SDA
Invalid data
8
7
6
5
1
Null Bit
8
7
6
5
4
3
2
1
Null Bit
8
7
Shift register
Second Byte Data 8 MSB 7 6 5 4 3 2 1 LSB
First Byte Data
Figure 15.1. DDC1 Mode Timing Diagram
15.2. DDC2B + Slave & Master Mode Bus Interface
The built-in DDC2B+ IIC bus Interface features are as follows: SLAVE mode (NT68F62 is addressed by a master that drives SCL signal) - MASTER mode (NT68F62 addresses external devices and sends out the SCL clock) - Compatible with IIC bus standard - One default $A0 slave address ( can be disabled ) and one user programmable address - Automatic wait state insertion - Interrupt generation for status control - Detection of START and STOP signals The DDC2B+ will be activated as SLAVE mode initially. Users can switch to MASTER mode by clearing the MODE bit under either of these conditions listed as follows: 1. After entering into DDC1 function and clearing this bit, the system will be changed from DDC1 to DDC2B+ MASTER mode operation. 2. After entering into DDC2B+ slave mode function and clearing this bit, the system will be changed from slave mode into master mode operation. During clearing of the MODE bit, the system will send out a 'START' condition and wait for the user to put the calling address into the CH0/1TXDAT control register. Notice: the user must predetermine the direction of the master mode transmission before putting the calling address. Below is the DDC2B+ function with channel 0, and the manipulation of channel 1 is the same as channel 0.
36
NT68F62
START CONDITION
STOP CONDITION
SDA
SCL
1-7
8
9
1-7
8
9
1-7
8
9
ADDRESS
R/W
ACK
DATA
ACK
DATA
ACK
IIDAT Reg. bit stream
8 MSB
7
6
5
4
1
ACK
8 MSB
7
6
5
4
3
2
1 LSB
ACK
8 MSB
7
LSB
Figure 15.2. DDC2B Data Transfer
37
NT68F62
S
Address
R/W
A
DATA
A
DATA Data transferred from external device
A
DATA
A
P
0 From external device to NT68F62 From NT68F62 to external device
A = Acknowledge S = START P = STOP
(a) WRITE Mode Data Format
SCL
wait
wait
wait
SDA (external device)
START 10 10 0 00 0
R/W DATA DATA DATA
STOP
INTS
INTA
INTRX
SDA (NT68F62)
A
A
A
A
(b) WRITE Mode Timing Diagram
Figure 15.3. DDC2B Write Mode Spec.
38
NT68F62
S
NT68F62 Address
R/W
A
DATA
A
DATA
A
DATA
A
P
1 From external device to NT68F62 From NT68F62 to external device
Data transferred from NT68F62
A = Acknowledge A = No acknowledge
S = START P = STOP
(a) Read Mode Data Format
SCL
wait
wait
wait
SDA (external device)
START 1 010 0
R/W 00 1 A A
STOP
INTS
INTA
INTTX user load first data into TXDAT buffer A DATA DATA
SDA (NT68F62)
(b) READ Mode Timing Diagram
Figure 15.4. DDC2B Read Mode Spec.
39
NT68F62
15.3. DDC2B Slave Mode Bus Interface
Enable IIC and INTS: After the user clears the ENDDC to `0', NT68F62 will enter into DDC1 mode, and it will switch to DDC2B SLAVE mode when a low pulse is detected on the SCL line. The DDC2B bus consists of two wires, SCL and SDA; SCL is the data transmission clock and SDA is the data line. NT68F62 will remind the user that the mode has changed by generating an INTS interrupt. When users set MD1/ 2 to '1' at this time, the NT68F62 will return back to DDC1 mode. (For DDC2B please refer to Figure 15.2.) The figure exhibits what isimportant in IIC: START signal, slave ADDRESS, transferred data (proceed byte by byte) and a STOP signal. Start condition: When SCL & SDA lines are at HIGH state, an external device (master) may initiate communication by sending a START signal (defined as SDA from high to low transition while SCL is at high state). When there is a START condition, NT68F62 will set the 'START' bit to '1' and the user can poll this status bit to control the DDC2B transmission at any time. This bit will stay as '1' until the user clears it. After sending a START signal for DDC2B communication, an external device can repeatedly send a start condition without sending a STOP signal to terminate this communication. This is used by the external device to communicate with another slave or with the same slave in a different mode (Read or Write mode) without releasing the bus. Address matched and INTA0: After the STARTcondition a slave address is sent by an external device. When the IIC bus interface changes to DDC2B mode, NT68F62 will act as a receiver first to receive this one byte data. This address data is 7 bits long followed by the eighth bit (R/W) that the system receives as an address data from an external device,
INTSTOP
and stores in the CH0RXDAT register. The system indicates the data transfer direction. The NT68F62 supports the 'A0' default address and another set of addresses that can be accessed by writing to the CH0ADDR register. The `A0' default address of the DDC channel 0 or 1 can be disabled by bit0 or bit1 at the CH0/1_A0 control register ($3E). Upon receiving the calling address from an external device, the system will compare this received data with the default 'A0' address (if it is not disabled) and the data in the CH0ADDR register. If either of these addresses matches, the system will set the INTA0 bit in the IRQ0 register. If the user sets the INTA0 bit to '1' (in the IEIRQ0 register) in advanced and addresses match, the NT68F62 will generate an INTA0 interrupt. Under the address matching condition, the NT68F62 will send an acknowledgement bit to an external device. If the address does not match, the NT68F62 will not generate the INTA0 interrupt and will neglect the data change on the SDA line in the future. Data transmission direction: In the INTA0 interrupt servicing routine, the user must check the LSB of the address data in the CH0RXDAT register. According to the IIC bus protocol, this bit indicates the DDC2B data transfer direction in later transmission; '1' indicates a request for a 'READ MODE' action (external master device read data from system), '0' indicates a 'WRITE MODE' action (external master device write data to system). For the timing about READ mode and WRITE mode please refer to Figure 15.3 and Figure 15.4. The data transfer can proceed byte by byte in a direction specified by the R/ W bit after a successful slave address is received. The system will switch to either 'READ' mode or 'WRITE' mode automatically whichever is determined by this direction bit.
STOP Detector TXDAT
SDA
INTTX TXACK INTNAK INTRX RXDAT INTA R/W ADDR DDC2BR [2..0] Clock Generator Compare Logic MD1/2 MODE ENDDC INTS
in
9 bits Shift Register
out clk
VSYNC SCL
Figure 15.5. DDC Structure Block
40
NT68F62
Data transfer and wait: The data on the SDA line must be stable during the HIGH period of the clock on the SCL line. The HIGH and LOW state of the SDA line can only change when the clock signal on the SCL line is LOW. Each byte of data is eight bits long and one clock pulse for one bit of data transfer. Data is transferred with the most significant bit (MSB) first. In the wired-AND connection, any slower device can hold the SCL line LOW to force the faster device into a waiting state. Data transmission will be suspended until the slower device is ready for the next byte transfer by releasing the SCL line. Acknowledge: The acknowledgment will be generated at the ninth clock by whomever is receiving data. In the WRITE MODE, the NT68F62 system must respond to this acknowledgment. Users should clear the TXACK bit in the CH0CON to open the `ACK' function. After receiving one byte of data from the external device, NT68F62 will automatically send this acknowledgment bit. In the READ mode, an external device must respond to the acknowledgment bit after every byte of data is sent out. The system will set the INTNAK bit when the external device does not send out the '0' acknowledgment bit. Furthermore, the user can open this interrupt source by clearing the INTNAK bit in the IEIRQ0 register. The INTTX0 & INTRX0 interrupt: After NT68F62 completes one byte transmission or receiving, it will generate INTTX0 (READ mode) & INTRX0 (WRITE mode) interrupts. These interrupts are generated at the falling edge of the ninth clock. Users can control the flow of DDC2B transmissions at these interrupts. The INTRX0 on the WRITE mode: NT68F62 reads data from the external master device. When users detect an INTRX0 interrupt, it means that one byte of data has been received and the user can read out by accessing the CH0RXDAT control register. At the same time, if the user responded to an 'ACK' signal beforehand, the shift register will send out this 'ACK' bit (low voltage) and continue to receive the next byte data. If both of the shift register and the CH0RXDAT register are full and the user still does not load data from the CH0RXDAT register, the NT68F62 system will let the SCL pin keep `LOW' and will wait for user to retrieve this collected data. After the user obtains one byte of data from the CH0RXDAT register, the SCL will be released for generation of the SCL transmission clock. At this time , the external device can continue sending the next byte of data to NT68F62. The timing diagram refers to Figure 15.3. The user must respond with a NAK signal beforehand to stop the transmission.
The INTTX0 on the READ mode: An external device can read data from NT68F62. During INTTX0 interrupt, the system will load new data from the CH0TXDAT register which the user has earlier put into this internal shift register. Then , the system will begin to send out this new data continually . After this newly loaded data had been shifted out by every SCL clock, the system will request the user to put the next byte of data into the CH0TXDAT register by the INTTX0 interrrupt. If both of the shift register and the CH0TXDAT register are empty and the user still cannot load data into the CH0TXDAT register, the NT68F62 system will let SCL pin keep `LOW' and wait the another new data after receiving the acknowledgment bit from external device. When SCL is held low by the system and after the user had put one new byte of data into the CH0TXDAT register, the SCL will be released for generation of the SCL transmission clock. At this time, the system will load this byte of data into the shift register and generate an INTTX0 interrupt again to remind the user to putt the next byte into the CH0TXDAT register. For the timing diagram refer to Figure 15.4. After every one byte of data transfer, the system will monitor if the external master device has sent out the acknowledgment bit or not. If not, the system will set the INTNAK bit (the acknowledgment is LOW signal). Users will get an INTNAK interrupt if the INTNAK has been enabled as a interrupt source. STOP condition: When SCL & SDA lines have been released (held on 'high' state), DDC2B data transfer is always terminated by a STOP condition generated by an external device. A STOP signal is defined as a LOW to HIGH transition of SDA while SCL is at HIGH state. When there is a STOP condition, NT68F62 will set the 'STOP' bit & INTSTOP bit to '1' and the user can poll this status bit or open a INTSTOP interrupt to control the DDC2B transmission at any time. This bit will stay as '1' until the user clears it by writing '1' to this bit. Notice: The SCL and SDA lines must conform to IIC bus specifications. For the software flowchart please refer to Figure 15.6. Please refer to the standard IIC bus specification for details. Change to DDC1 mode: After an external device terminates DDC2 transmission by sending a STOP condition, users can set MD1/ 2 to '1' for changing to DDC1 mode. On the other hand, when the SCL line has been released (pulledup), the user can force NT68F62 to DDC1 mode communication at any time.
41
NT68F62
Interrupt IRQ0/1 Group Service Routine Polling Need Polling INTS? yes No Need Polling INTA? yes WRITE Mode INTRX ? yes Read One Byte Data From CH0RXDAT Reg. No Need Polling INTRX? yes No READ Mode No Need Polling INTTX? yes No No Need Polling INTNAK? yes No Need Polling INTV? yes No
INTS ? DDC2 yes
INTA ? yes
No
INTTX ? yes
INTNAK? yes
No DDC1
INTV ? yes
No
Change To DDC2 Slave Mode & RECEIVING Mode
Read Out the SRW bit Reset Buffer Index
Trans. Over ? yes
No
Change To DDC1 Mode (MD_CON = 1)
Put Slave Addr. Into CH0ADDR Reg.
yes READ Mode ? No Open INTRX, INTNAK & INTA Put One Byte data Into CH0TXDAT Reg.
Recv. Over ? yes
No Put $FF Into CH0TXDAT Reg. (release SDA line)
Put One Byte Data Into CH0TXDATReg.
Open INTTX & INTS Return to DDC1? No Return to DDC1? yes No Open INTTX, INTNAK & INTA Transmission failed Open INTA System release SCL & SDA & send out STOP condition User can do some process
Open INTA
Open INTTX, INTNAK & INTA
yes
Other INT. Service
Open INTA & INTV
Open INTA
Open INTA & INTV
Open INTRX, INTNAK & INTA
Return
SLAVE Mode Operation
Figure 15.6. Slave Mode INT Operation
42
NT68F62
15.4 DDC2B+ Master Mode Bus Interface
Most of the DDC manipulation is the same as SLAVE mode except the SCL clock generation. In the MASTER mode, the control of the SCL clock source belongs to NT68F62. Users must set the calling address and transmission direction in advance. Access the MODE & MRW bits to control the transmission flow of DDC2B+ master mode communication. Start condition: After user clears the ENDDC & MODE bits, the system will generate a 'START' condition on the SCL & SDA lines and wait for the user to put the calling address into the TXDAT buffer and send it to SDA line. The frequency of SCL is dependant on the baud-rate setting value (DDCBR0 - DDCBR2) in the register CH0CLK. The data transmission direction will be dependant on the MRW bit and the LSB of the calling address, '1' for read operation and '0' for write operation. Calling address: The calling address is 8 bits long. It should be put in the CH0TXDAT. The setting of the LSB bit in this TXDAT buffer should be the same as the MRW bit. STOP condition: There are several cases in which the system will send out a 'STOP' condition on the SCL & SDA lines. First, in the 'READ' operation, if the user sets the TXACK bit to '1', the system will send out the 'NAK' condition on the bus after receiving one byte of data and will then send out the 'STOP' condition automatically later. Second, in the 'START' condition and after the sending out a calling address, if no slave has responded to an 'ACK' signal, the master will send out the 'STOP' condition automatically. Third, if the user sets the MODE bit to '1', the system will generate a 'STOP' condition after the current byte transmission is done. Notice that if the slave device did not release the SCL and SDA line, the system can not send out the 'STOP' condition. After the 'STOP' condition, the master will release the SCL & SDA lines and return to SLAVE mode. The INTTX0 & INTRX0 interrupt: After NT68F62 completes one byte transmission or receiving of data, it will generate INTTX0 (WRITE mode) & INTRX0 (READ mode) interrupts. Users can control the flow of DDC2B transmission at these interrupts. The INTRX0 on the read mode: NT68F62 reads data from an external slave device. When users detect an INTRX0 interrupt, it means that one byte data has been received and the user can read out by accessing CH0RXDAT control register. At the same time, if the user sent an 'ACK' signal beforehand, the shift register will send out an 'ACK' bit (low voltage) and continue to receive the next byte of data. If both the shift register and the CH0RXDAT register are full and the user still does not load data from the CH0RXDAT register, the SCL will be held LOW and will wait for NT68F62. After the user has received one byte of data from the CH0RXDAT register, the SCL will be released for generation of SCL transmission clock. An external device can continue sending the next byte of data to NT68F62. Refer to Figure 15.7 for the timing diagram. The user must respond to a NAK signal in advance to stop the transmission. Before the last two bytes of data are received, the user should respond with a 'NAK' signal. Then, the system will send out a 'NAK' bit after receiving the last byte of data and enact the 'STOP' condition to notify the slave that current transmission is terminated. The INTTX0 on the WRITE mode: The external device reads data from NT68F62. During an INTTX0 interrupt, the system will load new data (that the user has already put into the internal shift register) from the CH0TXDAT register and continue sending out this new data. After this new loading data has been shifted out by every SCL clock, the system will request the user to put the next byte of data into the CH0TXDAT register. If both of the shift register and the CH0TXDAT register are empty and the user still cannot load data into the CH0TXDAT register, the NT68F62 system will let SCL pin keep `LOW' and wait the another new data after receiving the acknowledgment bit from external device. If SCL is held low by the system, and the user has put one new byte of data into the CH0TXDAT register, the SCL will be released for generation of SCL transmission clock. At this time, the system will load this byte of data into the shift register and generate an INTTX0 interrupt again to remind the user to put the next byte into the CH0TXDAT register. Refer to Figure 15.8 for the timing diagram. Repeat start condition: If the user clears the RSTART bit to '0' in the ' WRITE' operation, the system will send out a 'Repeat Start'. Notice that if the slave device does not release the SCL and SDA lines, the system can not send out a 'REPEAT START condition. SCL baud rate selection: There are three Baud Rate bits for users to select one of eight clock rates on the SCL line. After a system reset, the default value of these Baud Rate bits (DDC2BR0-2) are '111'.
43
NT68F62
DDC2BR2 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
DDC2BR1 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
DDC2BR0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Baud Rate 400K 200K 100K 50K 25K 12.5K 6.25K 3.125K
SCL
wait
wait
wait
SDA (external device putting data)
R/W A
12 3 4 5 6 78 DATA
9
12 3 4 5 6 78 DATA
9
12 3 4 5 6 78 DATA
9
MODE = 0 Wait for user to put calling address into TXDAT buffer START SDA (NT68F62)
If user read out first byte data from RXDAT buffer, system will respond ACK, NAK or REPeat START STOP A A
ADDRESS
A
INTRX
If user does not read out this byte data from RXDAT buffer, the shift register will wait after receiving next byte data
Before user reads out this byte data from RXDAT buffer, he can set TXACK = 1 to terminate communication
Figure 15.7. DDC2B+ MASTER READ Mode Timiing
44
NT68F62
SCL
wait
wait
wait
wait
SDA (external device)
R/W A A A
MODE = 0 wait for user putting calling address into TXDAT buffer SDA (NT68F62) START 1 2 3 4 5 6 789 A 1 2 3 4 5 6 789 1 2 3 4 5 6 789 STOP
ADDRESS
DATA
DATA
INTTX
System will wait if user didn't send out the first byte data. As user loaded one byte data into TXDAT buffer, system will latch to shift register and send out MSB bit right away.
If user wants to terminate this communication, he can set MODE = 1 to send out STOP condition or clear RSTART = 0 to send out REPEAT START After sending out first byte data, user will get another INTTX to put next byte data into TXDAT buffer, If user does not send out the second byte data, the system will wait again after shifted out first byte data.
Figure 15.8. DDC2B+ MASTER WRITE Mode Timing
45
NT68F62
Control Register:
Addr Register INIT Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W
Control Register for Polling Interrupt Groups $0016 NMIPOLL 00H $0017 IRQPOLL 00H IRQ2 INTE0 CLRE0 IRQ1 INTMUTE CLRMUT E IRQ0 R W R
Control Registers of Interrupt Enable $0018 $0019 $001A $001B IENMI IEIRQ0 IEIRQ1 IEIRQ2 00H 00H 00H 00H INTS0 INTS1 INTA0 INTA1 INTTX0 INTTX1 INTRX0 INTRX1 INTV INTE0 INTNAK0 INTNAK1 INTE1 INTMUTE INTSTOP0 INTSTOP1 INTMR W W W W
Control Registers for Polling Interrupt Requests $001C IRQ0 00H $001D IRQ1 00H $001E IRQ2 00H INTS0 CLRS0 INTS1 CLRS1 INTA0 CLRA0 INTA1 CLRA1 INTTX0 CLRTX0 INTTX1 CLRTX1 INTADC CLRADC INTRX0 CLRRX0 INTRX1 CLRRX1 INTV CLRV INTNAK0 CLRNAK0 INTNAK1 CLRNAK1 INTE1 CLRE1 INTSTOP0 CLRSTOP0 INTSTOP1 CLRSTOP1 INTMR CLRMR R W R W R W
Control Register for DDC1/2B+ of Channel 0 $0021 $0022 $0023 $0024 CH0ADDR CH0TXDAT CH0RXDAT CH0CON A0H 00H 00H E0H ADR7 TX7 RX7
ENDDC
ADR6 TX6 RX6 MD1/ 2
MRW
ADR5 TX5 RX5
SRW RSTART
ADR4 TX4 RX4 START START
ADR3 TX3 RX3 STOP STOP
ADR2 TX2 RX2
ADR1 TX1 RX1
TXACK
TX0 RX0 DDC2BR0
W W R W R W
$0025 CH0CLK FFH
MODE
DDC2BR2 DDC2BR1
Control Register for DDC1/2B+ of Channel 1 $0026 $0027 $0028 $0029 CH1ADDR CH1TXDAT CH1RXDAT CH1CON A0H 00H 00H E0H ADR7 TX7 RX7
ENDDC
ADR6 TX6 RX6 MD1/ 2
MRW
ADR5 TX5 RX5
SRW RSTART
ADR4 TX4 RX4 START START
ADR3 TX3 RX3 STOP STOP
ADR2 TX2 RX2
ADR1 TX1 RX1
TXACK
TX0 RX0 DDC2BR0
W W R W R W
$002A CH1CLK FFH
MODE
DDC2BR2 DDC2BR1
46
NT68F62
Master Receiver No Reset Buffer Index Just Recv. One Byte Data? No ENDDC = 0 Yes After Recv. Data Send Repeat Start? No No ENDDC = 0 Send NO_ACK Set Last Byte Flag ENDDC = 0 Send Address Send Repeat Start Set Last Byte Flag Open INTTX & INTNAK Yes
Last Comm, is Repeat Start? Yes No Just Recv. One Byte Data? Yes After Recv. Data Send Repeat Start? No Send NO_ACK Set Last Byte Flag
Yes
Send Address Send Repeat Start set last byte flag Open INTRX & INTNAK
MODE = 0 Send Address Open INTTX & INTNAK
Send Address Open INTTX INTNAK
No Wait INT Recev. Over? Yes
Return
Figure 15.9. Master Receiver Operation
Master transmitter
Reset buffer index
Last Comm, is Repeat Start? Yes Send Address Send Repeat Start Open INTTX INTNAK
No
MODE = 0 Send Address Open INTTX & INTNAK No
Wait INT Trans. Over? Yes
Return
Figure 15.10. Master Transmitter Operation
47
NT68F62
Interrupt IRQ0/1 Group Service Routine
Need Polling INTRX? Yes
No
Need Polling INTTX? Yes
No
Need Polling INTNAK? yes
No
INTRX ? Yes
No
Last two byte data? Yes
No No INTTX? Yes No INTNAK? yes Other interruptProcess or Have someerror
last byte data ? Yes Read One Byte Data From CH0RXDATReg.
No
send repeat start? Yes
No Last byte Trans.? Send repeat start set last byte flag Yes No Calling Address? Yes No Transmission failed
Send repeat start set last byte flag send repeat start?
No
No Slave Device Exist System will send outSTOP & set MODE bit to 1 automatically
Receiver Over close INT interrupt Read One Byte Data From CH0RXDATReg.
Read One Byte Data From CH0RXDATReg.
Yes
Write 1 to MODE bit (system send out a STOP) Write 1 to MODE bit (system send out a STOP)
Send repeat start
Put next byte data into CH0TXDATReg.
Trans. over close INT interrupt Open INTRX & INTNAK INT
Open INTRX & INTNAK INT
Return
Figure 15.11. Master Mode INT Operation
48
NT68F62
User Referenced Flow Chart
Comparison With NT68P61A Item Maximum ROM Size RAM Size PWM Channel NT68P61A Status 24K Bytes 256 Bytes 14 channels 5V & 12V Open Drain O/P PWM Channel Refresh Rate A/D Converter Channel V Counter Bit No. 31.25 KHz 2 channels 12 Bits (handle Vsync freq. down to 30.5Hz) H Interval Auto Mute Free Run Freq. Self Test Pattern IIC Bus Channel IIC Bus Baud Rate IIC Mode Supported External Interrupt NMI Interrupt Interrupt Trigger Edge Programmable MASK ROM option 8.192 ms X 2 sets X 1 channel Max 100KHz DDC1/2B 1 set X X 24K NT68F62 Status 32K Bytes 512 Bytes 13 channels 5V Open Drain O/P Only 62.5 KHz 4 channels 14 Bits (handle Vsync freq. down to 7.6Hz) 16.384 & 32.768 ms O 5 sets O 2 channels Max 400KHz DDC1/2B+ 2 sets O O 32K 2 self test patterns 6 bit resolution Notes
49
NT68F62
DC Electrical Characteristics (VDD = 5V, TA = 25C, Oscillator freq. = 8MHz, Unless otherwise specified)
Symbol IDD VIH1 Parameter Operating Current Input High Voltage 2 Min. Typ. Max. 20 Unit mA V No Loading P00-P07, P12-P16, P20-P27, P40, P41
RESET , HALFHI INTE0, INTE1
Conditions
VIH2 VIL1
Input High Voltage Input Low Voltage
3 0.8
V V
SCL0/1, SDA0/1,P10, P11, P30, P31 pins P00-P07, P12-P16, P20-P27, P40, P41
RESET , HALFHI, INTE0, INTE1
VIL2 IIH
Input Low Voltage Input High Current -200
1.5 -350
V A
SCL0/1, SDA0/1, P10, P11 P30 ,P31 pins P00-P07, P10-P16, P20-P27, P40,P41 VSYNCI, HSYNCI, HALFHI, RESET (VIH=2.4V);
VOH1
Output High Voltage
2.4
V
P00-P07, P10-P16, P40, P41 (IOH = -100A) VSYNCO, HSYNCO (IOH = -4mA) HALFHO (IOH = -4mA) PATTERN, P20-P27 (IOH = -10mA)
VOH2 VOL
Output High Voltage (DAC0-DAC12) Output Low Voltage
5 0.4
V V
External applied voltage P00-P07, P10-P16, P40, P41, DAC0-12 (IOL= 4mA) SCL0/1, SDA0/1 (IOL= 5mA) VSYNCO, HSYNCO (IOL = 4mA) HALFHO (IOL = 4mA) PATTERN, P20-P27 ( IOL= 10mA)
ROL ROH1 ROH2 VIH VIL VjitterH VjitterL
Pull Down Resistor ( RESET) Pull up Resistor (INTE0, INTE1) Pull up Resistor (PORT0, PORT1, & PORT4) Input High Voltage Input Low Voltage Input Jitter Low Voltage Input Jitter High Voltage
25 11 11
50 22 22 2.2 1.2 33 33
K K K V V 2.0 1.4 V V
HSYNCI,VSYNCI HSYNCI HSYNCI
1.6 1.0
50
NT68F62
V
HSI
VjitterH = 1.8V
VIH = 2.2V
VIL = 0.8V
HSO
VjitterL = 1.2V
t
51
NT68F62
AC Electrical Characteristics (VDD = 5V, TA = 25C, Oscillator freq.= 8MHz, unless otherwise specified)
Symbol Fsys tCNVT Voffset Vlinear tDELAY tRESET Fvsync tVPW Fhsync tHPW1 tHPW2 tERROR1 tERROR2 Parameter System Clock A/D Conversion Time A/D Converter Error A/D Input Dynamic Range of Linearity Conversion The Delay Time of Vsync input and Vsync output Reset Pulse Width Low Vsync Input Frequency Vsync Input Pulse Width Hsync Input Frequency Maximum Pulse Width of Hsync Input High (Positive Polarity) Minimum Pulse Width of Hsync Input Low (Positive Polarity) Counting Deviation of Base Timer Counting Deviation of Base Timer 2 8 8 30 0.25 9.125 1 1 25K 300 120 7 1.5 Min. Typ. 8 750 1 3.5 20 Max. Unit MHz s LSB V ns tCYCLE Hz s KHz s s s ms 1s clock source 1ms clock source tHSYNC = 1/Fhsync Composite sync with fixed delay (Refer Figure 13.5) tCYCLE = 2/ Fsys tVSYNC = 1/Fvsync Conditions
52
NT68F62
DDC1 Mode
Symbol tVPW Fvsync tDD tMODE Parameter Vsync High Time Vsync Input Frequency Data Valid Time for Transition to DDC2B Mode Min. 0.50 32 200 Typ. Max. 300 25K 500 500 Unit s Hz ns ns tVSYNC =1/Fvsync Conditions
SCL
tMODE tDD
SDA
Bit 0
Null Bit
Bit 7
Bit 6
VSYNC
tVPW
Composite Hsync Input
tHPW2 tHPW1
Extracted Vsync Output tDELAY DELAY
53
NT68F62
DDC2B+ Mode
Symbol fSCL tBUF tHD; STA tLOW tHIGH tSU; STA tHD; DAT tSU; DAT tR tF tSU; STO Parameter SCL Clock Frequency Bus Free Between a STOP and START Condition Hold Time for START Condition LOW Period of the SCL Clock HIGH Period of the SCL Clock Set-up Time for a Repeated START Condition Data Hold Time Data Set-up Time Rising Time of Both SDA and SCL Signals Falling Time of Both SDA and SCL Signals Set-up Time for STOP Condition 0.80 4.7 0.8 1.3 0.8 1.3 200 300 1 300 Min. Typ. Max. 400 Unit KHz s s s s s ns ns s ns s
SDA
tBUF
tLOW
tR
tF
tHD; STA
SCL
tHD; STA STOP START
tHD; DAT tHIGH
tSU; DAT START
tSU; STA
tSU; STO STOP
54
NT68F62
Ordering Information
Part No. NT68F62 NT68F62U Packages 40L P-DIP 42L S-DIP
55
NT68F62
Package Information P-DIP 40L Outline Dimensions
D 40 21
unit: inches/mm
E1
1 S
20 E C
A2
A
A1
Base Plane Seating Plane B B1 e1 a eA
L
Symbol A A1 A2 B B1 C D E E1 e1 L eA S
Dimensions in inches 0.210 Max. 0.010 Min. 0.1550.010 0.018 +0.004 -0.002 0.050 +0.004 -0.002 0.010 +0.004 -0.002 2.055 Typ. (2.075 Max.) 0.6000.010 0.550 Typ. (0.562 Max.) 0.1000.010 0.1300.010 0 ~ 15 0.6550.035 0.093 Max.
Dimensions in mm 5.33 Max. 0.25 Min. 3.940.25 0.46 +0.10 -0.05 1.27 +0.10 -0.05 0.25 +0.10 -0.05 52.20 Typ. (52.71 Max.) 15.240.25 13.97 Typ. (14.27 Max.) 2.540.25 3.300.25 0 ~ 15 16.640.89 2.36 Max.
Notes: 1. The maximum value of dimension D includes end flash. 2. Dimension E1 does not include resin fins. 3. Dimension S includes end flash.
56
NT68F62
Package Information S-DIP 42L Outline Dimensions
D 42 22
unit: inches/mm
pin 1 index E
1 Z
21 ME C
A2
A
A1
Base Plane Seating Plane e1 b1 b e MH
L
Symbol A A1 A2 b b1 c D
(1)
Dimensions in inches 0.200 Max. 0.020 Min. 0.157 Max. 0.051 Max. 0.031 Min. 0.021 Max. 0.016 Min. 0.013 Max. 0.010 Min. 1.531 Max. 1.512 Min. 0.551 Max. 0.539 Min. 0.070 0.600 0.126 Max. 0.114 Min. 0.622 Max. 0.600 Min. 0.675 Max. 0.626 Min. 0.007 0.068 Max.
Dimensions in mm 5.08 Max. 0.51 Min. 4.0 Max. 1.3 Max. 0.8 Min. 0.53 Max. 0.40 Min. 0.32 Max. 0.23 Min. 38.9 Max. 38.4 Min. 14.0 Max. 13.7 Min. 1.778 15.24 3.2 Max. 2.9 Min. 15.80 Max. 15.24 Min. 17.15 Max. 15.90 Min. 0.18 1.73 Max.
E(1) e e1 L ME MH w Z(1)
Notes: 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
57


▲Up To Search▲   

 
Price & Availability of NT68F62

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X